Boosting and instability for regression trees
نویسندگان
چکیده
منابع مشابه
Boosting and instability for regression trees
The AdaBoost like algorithm for boosting CART regression trees is considered. The boosting predictors sequence is analyzed on various data sets and the behaviour of the algorithm is investigated. An instability index of a given estimation method with respect to some training sample is defined. Based on the bagging algorithm, this instability index is then extended to quantify the additional ins...
متن کاملOutlier Detection by Boosting Regression Trees
A procedure for detecting outliers in regression problems is proposed. It is based on information provided by boosting regression trees. The key idea is to select the most frequently resampled observation along the boosting iterations and reiterate after removing it. The selection criterion is based on Tchebychev’s inequality applied to the maximum over the boosting iterations of ...
متن کاملGradient Boosting With Piece-Wise Linear Regression Trees
Gradient boosting using decision trees as base learners, so called Gradient Boosted Decision Trees (GBDT), is a very successful ensemble learning algorithm widely used across a variety of applications. Recently, various GDBT construction algorithms and implementation have been designed and heavily optimized in some very popular open sourced toolkits such as XGBoost and LightGBM. In this paper, ...
متن کاملBoosting for Regression Transfer
The goal of transfer learning is to improve the learning of a new target concept given knowledge of related source concept(s). We introduce the first boosting-based algorithms for transfer learning that apply to regression tasks. First, we describe two existing classification transfer algorithms, ExpBoost and TrAdaBoost, and show how they can be modified for regression. We then introduce extens...
متن کاملBoosting trees for clause splitting
We present a system for the CoNLL shared task the clause splitting problem Our ap proach consists in decomposing the clause split ting problem into a combination of binary sim ple decisions which we solve with the Ada Boost learning algorithm The whole problem is decomposed in two levels with two chained decisions per level The rst level corresponds to parts and presented in the introductory do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2006
ISSN: 0167-9473
DOI: 10.1016/j.csda.2004.09.001